{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Combined Parameters" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Logging hadn't been started.\n", "Activating auto-logging. Current session state plus future input saved.\n", "Filename : C:\\Users\\a-halakh\\.qcodes\\logs\\command_history.log\n", "Mode : append\n", "Output logging : True\n", "Raw input log : False\n", "Timestamping : True\n", "State : active\n", "Qcodes Logfile : C:\\Users\\a-halakh\\.qcodes\\logs\\200324-28996-qcodes.log\n", "False\n" ] } ], "source": [ "import numpy as np\n", "import qcodes as qc\n", "from qcodes.parameters import ManualParameter, combine\n", "from qcodes.validators import Numbers\n", "\n", "from qcodes_loop.loops import Loop" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you want to sweep multiple parameters at once qcodes offers the combine function.\n", "You can combine any number of any kind paramter. \n", "We'll use a ManualParameter for this example." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "p1 = ManualParameter('p1', vals=Numbers(-10, 10))\n", "p2 = ManualParameter('p2', vals=Numbers(-10, 10))\n", "p3 = ManualParameter('p3', vals=Numbers(-10, 10))\n", "p4 = ManualParameter('p4', vals=Numbers(-10, 10))\n", "# set to -1 so we get some data out\n", "p4.set(-1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Simple combined parameters " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "combined = combine(p1, p2, p3, name='combined')\n", "\n", "sweep_vals = np.array([[1, 1,1], [1, 1,1]])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# 2d loop with a inner loop over a combined parameter\n", "loop = Loop(p1.sweep(0,10,1)).loop(combined.sweep(sweep_vals), delay=0.001).each(p4)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "data = loop.get_data_set(name='testsweep')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Started at 2020-03-24 18:35:07\n", "DataSet:\n", " location = 'data/2020-03-24/#004_testsweep_18-35-07'\n", " | | | \n", " Setpoint | p1_set | p1 | (11,)\n", " Setpoint | combined_set | combined | (11, 2)\n", " Measured | p4 | p4 | (11, 2)\n", " Measured | p1 | p1 | (11, 2)\n", " Measured | p2 | p2 | (11, 2)\n", " Measured | p3 | p3 | (11, 2)\n", "Finished at 2020-03-24 18:35:07\n" ] } ], "source": [ "data = loop.run()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The combined_set just stores the indices " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DataArray[11,2]: combined_set\n", "array([[0., 1.],\n", " [0., 1.],\n", " [0., 1.],\n", " [0., 1.],\n", " [0., 1.],\n", " [0., 1.],\n", " [0., 1.],\n", " [0., 1.],\n", " [0., 1.],\n", " [0., 1.],\n", " [0., 1.]])\n" ] } ], "source": [ "print(data.combined_set)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But the acutal set values are saved, but labeled as \"measured\"" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "DataArray[11,2]: p3\n", "array([[1., 1.],\n", " [1., 1.],\n", " [1., 1.],\n", " [1., 1.],\n", " [1., 1.],\n", " [1., 1.],\n", " [1., 1.],\n", " [1., 1.],\n", " [1., 1.],\n", " [1., 1.],\n", " [1., 1.]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.p3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Combine and aggregate parameters\n", "\n", "If an aggregator function is given, the aggregated values are saved instead of the indices." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# define an aggregator function that takes as arguments the parameters you whish to aggegate\n", "def linear(x,y,z):\n", " return x+y+z" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "combined = combine(p1, p2, p3, name='combined', label=\"Sum\", unit=\"a.u\", aggregator=linear)\n", "\n", "x_vals = np.linspace(1, 2, 2)\n", "y_vals = np.linspace(1, 2, 2)\n", "z_vals = np.linspace(1, 2, 2)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# 2d loop with a inner loop over a combined parameter\n", "loop = Loop(p1.sweep(0,10,1)).loop(combined.sweep(x_vals, y_vals, z_vals), delay=0.001).each(p4)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "data = loop.get_data_set(name='testsweep')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Started at 2020-03-24 18:35:07\n", "DataSet:\n", " location = 'data/2020-03-24/#005_testsweep_18-35-07'\n", " | | | \n", " Setpoint | p1_set | p1 | (11,)\n", " Setpoint | combined_set | combined | (11, 2)\n", " Measured | p4 | p4 | (11, 2)\n", " Measured | p1 | p1 | (11, 2)\n", " Measured | p2 | p2 | (11, 2)\n", " Measured | p3 | p3 | (11, 2)\n", "Finished at 2020-03-24 18:35:07\n" ] } ], "source": [ "data = loop.run()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "the combined_set now stores the aggregated values" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DataArray[11,2]: combined_set\n", "array([[3., 6.],\n", " [3., 6.],\n", " [3., 6.],\n", " [3., 6.],\n", " [3., 6.],\n", " [3., 6.],\n", " [3., 6.],\n", " [3., 6.],\n", " [3., 6.],\n", " [3., 6.],\n", " [3., 6.]])\n" ] } ], "source": [ "print(data.combined_set)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "OrderedDict([('__class__', 'qcodes.instrument.parameter.CombinedParameter'),\n", " ('unit', 'a.u'),\n", " ('label', 'Sum'),\n", " ('full_name', 'combined'),\n", " ('aggregator', ''),\n", " ('p1',\n", " {'value': 2.0,\n", " 'raw_value': 2.0,\n", " 'ts': '2020-03-24 18:35:07',\n", " '__class__': 'qcodes.instrument.parameter.ManualParameter',\n", " 'full_name': 'p1',\n", " 'post_delay': 0,\n", " 'label': 'p1',\n", " 'inter_delay': 0,\n", " 'vals': '',\n", " 'unit': '',\n", " 'name': 'p1'}),\n", " ('p2',\n", " {'value': 2.0,\n", " 'raw_value': 2.0,\n", " 'ts': '2020-03-24 18:35:07',\n", " '__class__': 'qcodes.instrument.parameter.ManualParameter',\n", " 'full_name': 'p2',\n", " 'post_delay': 0,\n", " 'label': 'p2',\n", " 'inter_delay': 0,\n", " 'vals': '',\n", " 'unit': '',\n", " 'name': 'p2'}),\n", " ('p3',\n", " {'value': 2.0,\n", " 'raw_value': 2.0,\n", " 'ts': '2020-03-24 18:35:07',\n", " '__class__': 'qcodes.instrument.parameter.ManualParameter',\n", " 'full_name': 'p3',\n", " 'post_delay': 0,\n", " 'label': 'p3',\n", " 'inter_delay': 0,\n", " 'vals': '',\n", " 'unit': '',\n", " 'name': 'p3'})])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# snapshot of the combined parameter\n", "combined.snapshot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 1 }